Experimental investigation of cerebral contusion: histopathological and immunohistochemical evaluation of dynamic cortical deformation.
نویسندگان
چکیده
We used a new approach, termed dynamic cortical deformation (DCD), to study the neuronal, vascular, and glial responses that occur in focal cerebral contusions. DCD produces experimental contusion by rapidly deforming the cerebral cortex with a transient, nonablative vacuum pulse of short duration (25 milliseconds) to mimic the circumstances of traumatic injury. A neuropathological evaluation was performed on brain tissue from adult rats sacrificed 3 days following induction of either moderate (4 psi, n = 6) or high (8 psi, n = 6) severity DCD. In all animals, DCD produced focal hemorrhagic lesions at the vacuum site without overt damage to other regions. Examination of histological sections showed localized gross tissue and neuronal loss in the cortex at the injury site, with the volume of cell loss dependent upon the mechanical loading (p < 0.001). Axonal pathology shown with neurofilament immunostaining (SMI-31 and SMI-32) was observed in the subcortical white matter inferior to the injury site and in the ipsilateral internal capsule. No axonal injury was observed in the contralateral hemisphere or in any remote regions. Glial fibrillary acidic protein (GFAP) immunostaining revealed widespread reactive astrocytosis surrounding the necrotic region in the ipsilateral cortex. This analysis confirms that rapid mechanical deformation of the cortex induces focal contusions in the absence of primary damage to remote areas 3 days following injury. Although it is suggested that massive release of neurotoxic substances from a contusion may cause damage throughout the brain, these data emphasize the importance of combined injury mechanisms, e.g. mechanical distortion and excitatory amino acid mediated damage, that underlie the complex pathology patterns observed in traumatic brain injury.
منابع مشابه
Investigation of histopathological and radiological effects of surfactant treatment in an experimental female rat model of lung contusion
Objective(s): Pulmonary contusion (PC) is a clinical entity that often accompanies blunt traumas. We aimed to investigate the radiological and histopathological effects of surfactant treatment in an experimental rat model in which lung contusion was formed by blunt thoracic trauma.Materials and Methods: 50 female Sprague-Dawley rats were...
متن کاملNeuroprotective effects of crocin on the histopathological alterations following brain ischemia-reperfusion injury in rat
Objective(s): Some histopathological alterations take place in the ischemic regions following brain ischemia. Recent studies have demonstrated some neuroprotective roles of crocin in different models of experimental cerebral ischemia. Here, we investigated the probable neuroprotective effects of crocin on the brain infarction and histopathological changes after transient model of focal cerebral...
متن کاملEvaluation of mobile phone radiation-induced structural changes of rat brain with emphasis on the possible protective role of pomegranate peel extract
Background: The study aims to evaluate the impact of the antioxidant rich pomegranate fruit grown in Taif on the histological and immunohistochemical changes in the cerebral and cerebellar cortex after different levels of mobile exposure. Materials and Methods: Thirty adult male rats were divided into group I, II, III; IV, and group V. Group I was control and group II rats were exposed to 900 M...
متن کاملInhibition of Angiotensin-Converting Enzyme Reduces Cerebral Infarction Size in Experimental-Induced Focal Cerebral Ischemia in the Rat
Background: The role of Renin Angiotensin System (RAS) in ischemic/reperfusion (I/R) injuries is not fully elucidated. Furthermore, it is not clear whether inhibition of RAS by Angiotensin-Converting Enzyme (ACE) inhibitors has beneficial effects in terms of protecting the brain from I/R injuries. In this study enalapril is used as an ACE inhibitor to evaluate the role of RAS in I/R injuries in...
متن کاملTopographical evaluation of aphasia based on brain vascular territories
Topographical evaluation of aphasic brain lesions can enhance our knowledge of cognitive physiology and plasticity. This prospective study was conducted on 100 stroke-afflicted patients with aphasia admitted in Valie-Asr Hospital (Khorasan, Iran) in 2003. Topography of infarct lesions was detected by a neurologist based on the map of brain vascular territories in CT-scan. Aphasic lesions catego...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuropathology and experimental neurology
دوره 58 2 شماره
صفحات -
تاریخ انتشار 1999